Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Emerg Infect Dis ; 30(2): 399-401, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270110

RESUMO

We identified a novel lineage of lymphocytic choriomeningitis virus, tentatively named lineage V, in wood mice (Apodemus sylvaticus) from Germany. Wood mouse-derived lymphocytic choriomeningitis virus can be found across a substantially greater range than previously thought. Increased surveillance is needed to determine its geographic range and zoonotic potential.


Assuntos
Vírus da Coriomeningite Linfocítica , Camundongos , Animais , Vírus da Coriomeningite Linfocítica/genética , Alemanha/epidemiologia
3.
Front Microbiol ; 14: 1250140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779690

RESUMO

Background: Methanogenic archaea represent a less investigated and likely underestimated part of the intestinal tract microbiome in swine. Aims/Methods: This study aims to elucidate the archaeome structure and function in the porcine intestinal tract of healthy and H1N1 infected swine. We performed multi-omics analysis consisting of 16S rRNA gene profiling, metatranscriptomics and metaproteomics. Results and discussion: We observed a significant increase from 0.48 to 4.50% of archaea in the intestinal tract microbiome along the ileum and colon, dominated by genera Methanobrevibacter and Methanosphaera. Furthermore, in feces of naïve and H1N1 infected swine, we observed significant but minor differences in the occurrence of archaeal phylotypes over the course of an infection experiment. Metatranscriptomic analysis of archaeal mRNAs revealed the major methanogenesis pathways of Methanobrevibacter and Methanosphaera to be hydrogenotrophic and methyl-reducing, respectively. Metaproteomics of archaeal peptides indicated some effects of the H1N1 infection on central metabolism of the gut archaea. Conclusions/Take home message: Finally, this study provides the first multi-omics analysis and high-resolution insights into the structure and function of the porcine intestinal tract archaeome during a non-lethal Influenza A virus infection of the respiratory tract, demonstrating significant alterations in archaeal community composition and central metabolic functions.

4.
Sci Rep ; 13(1): 10342, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604847

RESUMO

African swine fever virus (ASFV) is a lethal animal pathogen that enters its host cells through endocytosis. So far, host factors specifically required for ASFV replication have been barely identified. In this study a genome-wide CRISPR/Cas9 knockout screen in porcine cells indicated that the genes RFXANK, RFXAP, SLA-DMA, SLA-DMB, and CIITA are important for productive ASFV infection. The proteins encoded by these genes belong to the major histocompatibility complex II (MHC II), or swine leucocyte antigen complex II (SLA II). RFXAP and CIITA are MHC II-specific transcription factors, whereas SLA-DMA/B are subunits of the non-classical MHC II molecule SLA-DM. Targeted knockout of either of these genes led to severe replication defects of different ASFV isolates, reflected by substantially reduced plating efficiency, cell-to-cell spread, progeny virus titers and viral DNA replication. Transgene-based reconstitution of SLA-DMA/B fully restored the replication capacity demonstrating that SLA-DM, which resides in late endosomes, plays a crucial role during early steps of ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Traumatismos Craniocerebrais , Animais , Suínos , Vírus da Febre Suína Africana/genética , Replicação do DNA , DNA Viral , Replicação Viral/genética , Antígenos de Histocompatibilidade Classe II/genética , Proteínas de Membrana , Complexo Principal de Histocompatibilidade , Febre Suína Africana/genética
5.
Virus Evol ; 9(1): vead013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197362

RESUMO

West Nile virus (WNV) is the most widespread arthropod-borne (arbo) virus and the primary cause of arboviral encephalitis globally. Members of WNV species genetically diverged and are classified into different hierarchical groups below species rank. However, the demarcation criteria for allocating WNV sequences into these groups remain individual and inconsistent, and the use of names for different levels of the hierarchical levels is unstructured. In order to have an objective and comprehensible grouping of WNV sequences, we developed an advanced grouping workflow using the 'affinity propagation clustering' algorithm and newly included the 'agglomerative hierarchical clustering' algorithm for the allocation of WNV sequences into different groups below species rank. In addition, we propose to use a fixed set of terms for the hierarchical naming of WNV below species level and a clear decimal numbering system to label the determined groups. For validation, we applied the refined workflow to WNV sequences that have been previously grouped into various lineages, clades, and clusters in other studies. Although our workflow regrouped some WNV sequences, overall, it generally corresponds with previous groupings. We employed our novel approach to the sequences from the WNV circulation in Germany 2020, primarily from WNV-infected birds and horses. Besides two newly defined minor (sub)clusters comprising only three sequences each, Subcluster 2.5.3.4.3c was the predominant WNV sequence group detected in Germany from 2018 to 2020. This predominant subcluster was also associated with at least five human WNV infections in 2019-20. In summary, our analyses imply that the genetic diversity of the WNV population in Germany is shaped by enzootic maintenance of the dominant WNV subcluster accompanied by sporadic incursions of other rare clusters and subclusters. Moreover, we show that our refined approach for sequence grouping yields meaningful results. Although we primarily aimed at a more detailed WNV classification, the presented workflow can also be applied to the objective genotyping of other virus species.

6.
Emerg Infect Dis ; 29(6): 1202-1205, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209672

RESUMO

We detected a novel poxvirus from a gray seal (Halichoerus grypus) from the North Sea, Germany. The juvenile animal showed pox-like lesions and deteriorating overall health condition and was finally euthanized. Histology, electron microscopy, sequencing, and PCR confirmed a previously undescribed poxvirus of the Chordopoxvirinae subfamily, tentatively named Wadden Sea poxvirus.


Assuntos
Chordopoxvirinae , Poxviridae , Focas Verdadeiras , Animais , Poxviridae/genética , Mar do Norte , Alemanha/epidemiologia
7.
J Virol ; 97(4): e0193222, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022231

RESUMO

High-throughput sequences were generated from DNA and cDNA from four Southern white rhinoceros (Ceratotherium simum simum) located in the Taronga Western Plain Zoo in Australia. Virome analysis identified reads that were similar to Mus caroli endogenous gammaretrovirus (McERV). Previous analysis of perissodactyl genomes did not recover gammaretroviruses. Our analysis, including the screening of the updated white rhinoceros (Ceratotherium simum) and black rhinoceros (Diceros bicornis) draft genomes identified high-copy orthologous gammaretroviral ERVs. Screening of Asian rhinoceros, extinct rhinoceros, domestic horse, and tapir genomes did not identify related gammaretroviral sequences in these species. The newly identified proviral sequences were designated SimumERV and DicerosERV for the white and black rhinoceros retroviruses, respectively. Two long terminal repeat (LTR) variants (LTR-A and LTR-B) were identified in the black rhinoceros, with different copy numbers associated with each (n = 101 and 373, respectively). Only the LTR-A lineage (n = 467) was found in the white rhinoceros. The African and Asian rhinoceros lineages diverged approximately 16 million years ago. Divergence age estimation of the identified proviruses suggests that the exogenous retroviral ancestor of the African rhinoceros ERVs colonized their genomes within the last 8 million years, a result consistent with the absence of these gammaretroviruses from Asian rhinoceros and other perissodactyls. The black rhinoceros germ line was colonized by two lineages of closely related retroviruses and white rhinoceros by one. Phylogenetic analysis indicates a close evolutionary relationship with ERVs of rodents including sympatric African rats, suggesting a possible African origin of the identified rhinoceros gammaretroviruses. IMPORTANCE Rhinoceros genomes were thought to be devoid of gammaretroviruses, as has been determined for other perissodactyls (horses, tapirs, and rhinoceros). While this may be true of most rhinoceros, the African white and black rhinoceros genomes have been colonized by evolutionarily young gammaretroviruses (SimumERV and DicerosERV for the white and black rhinoceros, respectively). These high-copy endogenous retroviruses (ERVs) may have expanded in multiple waves. The closest relative of SimumERV and DicerosERV is found in rodents, including African endemic species. Restriction of the ERVs to African rhinoceros suggests an African origin for the rhinoceros gammaretroviruses.


Assuntos
Evolução Biológica , Retrovirus Endógenos , Gammaretrovirus , Perissodáctilos , Animais , Camundongos , Ratos , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Gammaretrovirus/classificação , Gammaretrovirus/genética , Cavalos/genética , Cavalos/virologia , Perissodáctilos/genética , Perissodáctilos/virologia , Filogenia , Provírus/genética
8.
Nat Commun ; 14(1): 624, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739288

RESUMO

'Staggering disease' is a neurological disease entity considered a threat to European domestic cats (Felis catus) for almost five decades. However, its aetiology has remained obscure. Rustrela virus (RusV), a relative of rubella virus, has recently been shown to be associated with encephalitis in a broad range of mammalian hosts. Here, we report the detection of RusV RNA and antigen by metagenomic sequencing, RT-qPCR, in-situ hybridization and immunohistochemistry in brain tissues of 27 out of 29 cats with non-suppurative meningoencephalomyelitis and clinical signs compatible with'staggering disease' from Sweden, Austria, and Germany, but not in non-affected control cats. Screening of possible reservoir hosts in Sweden revealed RusV infection in wood mice (Apodemus sylvaticus). Our work indicates that RusV is the long-sought cause of feline 'staggering disease'. Given its reported broad host spectrum and considerable geographic range, RusV may be the aetiological agent of neuropathologies in further mammals, possibly even including humans.


Assuntos
Encefalomielite , Humanos , Animais , Gatos , Camundongos , Causalidade , Suécia , Áustria , Alemanha , Mamíferos
9.
Emerg Infect Dis ; 29(3): 631-634, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823667

RESUMO

Lymphocytic choriomeningitis mammarenavirus (LCMV) is a globally distributed zoonotic pathogen transmitted by house mice (Mus musculus). We report the reemergence of LCMV (lineages I and II) in wild house mice (Mus musculus domesticus) and LCMV lineage I in a diseased golden lion tamarin (Leontopithecus rosalia) from a zoo in Germany.


Assuntos
Coriomeningite Linfocítica , Doenças dos Roedores , Animais , Camundongos , Vírus da Coriomeningite Linfocítica , Alemanha
10.
Microbiol Spectr ; : e0266422, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36700688

RESUMO

Surveillance of avian influenza viruses (AIV) in wild water bird populations is important for early warning to protect poultry from incursions of high-pathogenicity (HP) AIV. Access to individual water birds is difficult and restricted and limits sampling depth. Here, we focused on environmental samples such as surface water, sediments, and environmentally deposited fresh avian feces as matrices for AIV detection. Enrichment of viral particles by ultrafiltration of 10-L surface water samples using Rexeed-25-A devices was validated using a bacteriophage ϕ6 internal control system, and AIV detection was attempted using real-time RT-PCR and virus isolation. While validation runs suggested an average enrichment of about 60-fold, lower values of 10 to 15 were observed for field water samples. In total 25/36 (60%) of water samples and 18/36 (50%) of corresponding sediment samples tested AIV positive. Samples were obtained from shallow water bodies in habitats with large numbers of waterfowl during an HPAIV epizootic. Although AIV RNA was detected in a substantial percentage of samples virus isolation failed. Virus loads in samples often were too low to allow further sub- and pathotyping. Similar results were obtained with environmentally deposited avian feces. Moreover, the spectrum of viruses detected by these active surveillance methods did not fully mirror an ongoing HPAIV epizootic among waterfowl as detected by passive surveillance, which, in terms of sensitivity, remains unsurpassed. IMPORTANCE Avian influenza viruses (AIV) have a wide host range in the avian metapopulation and, occasionally, transmission to humans also occurs. Surface water plays a particularly important role in the epidemiology of AIV, as the natural virus reservoir is found in aquatic wild birds. Environmental matrices comprising surface water, sediments, and avian fecal matter deposited in the environment were examined for their usefulness in AIV surveillance. Despite virus enrichment efforts, environmental samples regularly revealed very low virus loads, which hampered further sub- and pathotyping. Passive surveillance based on oral and cloacal swabs of diseased and dead wild birds remained unsurpassed with respect to sensitivity.

11.
Emerg Microbes Infect ; 12(1): 2146537, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36356059

RESUMO

African swine fever virus (ASFV), a large and complex DNA-virus circulating between soft ticks and indigenous suids in sub-Saharan Africa, has made its way into swine populations from Europe to Asia. This virus, causing a severe haemorrhagic disease (African swine fever) with very high lethality rates in wild boar and domestic pigs, has demonstrated a remarkably high genetic stability for over 10 years. Consequently, analyses into virus evolution and molecular epidemiology often struggled to provide the genetic basis to trace outbreaks while few resources have been dedicated to genomic surveillance on whole-genome level. During its recent incursion into Germany in 2020, ASFV has unexpectedly diverged into five clearly distinguishable linages with at least ten different variants characterized by high-impact mutations never identified before. Noticeably, all new variants share a frameshift mutation in the 3' end of the DNA polymerase PolX gene O174L, suggesting a causative role as possible mutator gene. Although epidemiological modelling supported the influence of increased mutation rates, it remains unknown how fast virus evolution might progress under these circumstances. Moreover, a tailored Sanger sequencing approach allowed us, for the first time, to trace variants with genomic epidemiology to regional clusters. In conclusion, our findings suggest that this new factor has the potential to dramatically influence the course of the ASFV pandemic with unknown outcome. Therefore, our work highlights the importance of genomic surveillance of ASFV on whole-genome level, the need for high-quality sequences and calls for a closer monitoring of future phenotypic changes of ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Sus scrofa , Europa (Continente)/epidemiologia , Alemanha
12.
Nat Commun ; 13(1): 5929, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207334

RESUMO

Variant of concern (VOC) Omicron-BA.1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and animal models are urgently needed. Here, we characterize Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in hamsters, ferrets and hACE2-expressing mice, and immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In hamsters, Delta shows dominance over Omicron-BA.1, and in ferrets Omicron-BA.1 infection is abortive. In hACE2-knock-in mice, Delta and a Delta spike clone also show dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naïve K18-hACE2 mice, we observe Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of replication and pathogenicity. Finally, the Omicron-BA.1 spike clone is less well-controlled by mRNA-vaccination in K18-hACE2-mice and becomes more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Furões , Humanos , Melfalan , Camundongos , Fenótipo , RNA Mensageiro , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , gama-Globulinas
13.
Sci Rep ; 12(1): 15069, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064749

RESUMO

Golden Syrian hamsters (Mesocricetus auratus) are used as a research model for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Millions of Golden Syrian hamsters are also kept as pets in close contact to humans. To determine the minimum infective dose (MID) for assessing the zoonotic transmission risk, and to define the optimal infection dose for experimental studies, we orotracheally inoculated hamsters with SARS-CoV-2 doses from 1 * 105 to 1 * 10-4 tissue culture infectious dose 50 (TCID50). Body weight and virus shedding were monitored daily. 1 * 10-3 TCID50 was defined as the MID, and this was still sufficient to induce virus shedding at levels up to 102.75 TCID50/ml, equaling the estimated MID for humans. Virological and histological data revealed 1 * 102 TCID50 as the optimal dose for experimental infections. This compelling high susceptibility leading to productive infections in Golden Syrian hamsters must be considered as a potential source of SARS-CoV-2 infection for humans that come into close contact with pet hamsters.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Mesocricetus , Pandemias , Zoonoses/patologia
14.
PNAS Nexus ; 1(3): pgac073, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35860599

RESUMO

Until recently, it was assumed that members of the family Bornaviridae could not induce severe disease in humans. Today, however, Borna disease virus 1 (BoDV-1), as well as the more recently emerged variegated squirrel bornavirus 1 (VSBV-1), are known as causative agents of lethal encephalitis in humans. In order to establish animal models reflecting the pathogenesis in humans and for countermeasure efficacy testing, we infected twelve rhesus macaques (Macaca mulatta) either with VSBV-1 or with BoDV-1. For each virus, three monkeys each were inoculated with 2 × 104 focus forming units by the intracerebral route or by multiple peripheral routes (intranasal, conjunctival, intramuscular, and subcutaneous; same dose in total). All BoDV-1 and VSBV-1 intracerebrally infected monkeys developed severe neurological signs around 5 to 6 or 8 to 12 weeks postinfection, respectively. Focal myoclonus and tremors were the most prominent observations in BoDV-1 and VSBV-1-infected animals. VSBV-1-infected animals also showed behavioral changes. Only one BoDV-1 peripherally infected animal developed similar disease manifestations. All animals with severe clinical disease showed high viral loads in brain tissues and displayed perivascular mononuclear cuffs with a predominance of lymphocytes and similar meningeal inflammatory infiltrates. In summary, rhesus macaques intracerebrally infected with mammalian bornaviruses develop a human-like disease and may serve as surrogate models for human bornavirus infection.

15.
Parasitol Res ; 121(9): 2587-2599, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35857094

RESUMO

Aedes albopictus is a highly invasive mosquito species that has become widespread across the globe. In addition, it is an efficient vector of numerous pathogens of medical and veterinary importance, including dengue, chikungunya and Zika viruses. Among others, the vector potential of mosquitoes is influenced by their microbiome. However, this influence is very dynamic and can vary between individuals and life stages. To obtain a rough overview on the microbiome of Ae. albopictus populations in Germany, pooled female and pooled male individuals from seven German locations were investigated by total RNA sequencing. The mosquito specimens had been collected as larvae in the field and processed immediately after adult emergence, i.e. without females having fed on blood. RNA fragments with high degrees of identity to a large number of viruses and microorganisms were identified, including, for example, Wolbachia pipientis and Acinetobacter baumannii, with differences between male and female mosquitoes. Knowledge about the natural occurrence of microorganisms in mosquitoes may be translated into new approaches to vector control, for example W. pipientis can be exploited to manipulate mosquito reproduction and vector competence. The study results show how diverse the microbiome of Ae. albopictus can be, and the more so needs to be adequately analysed and interpreted.


Assuntos
Aedes , Infecção por Zika virus , Zika virus , Animais , Feminino , Humanos , Espécies Introduzidas , Masculino , Metagenoma , Mosquitos Vetores , RNA
16.
Adv Virus Res ; 112: 115-173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35840180

RESUMO

Rabies infects all mammals; however, transmission cycles are only maintained in certain bat and carnivore species. The high incidence of rabies in Greater Kudu (Tragelaphus strepsiceros) observed in Namibia for over 40 years has led to postulation that independent virus transmission is occurring within this antelope population. We have analysed extensive experimental, epidemiological, phylogeographic and deep sequence data, which collectively refute maintenance of an independent rabies cycle in kudu. As rabies in kudu continues to have a negative impact on the Namibian agricultural sector, measures to protect kudu have been investigated, including the use of a third-generation oral rabies vaccine. Initial results show protection of kudu from rabies infection via the oral route, with an appropriate bait design, different application schedules and vaccination doses further enhancing the immune response. Rabies in kudu is a complex interplay at the wildlife-livestock interface and requires a concerted approach to successfully control.


Assuntos
Antílopes , Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Animais Selvagens , Antílopes/fisiologia , Raiva/epidemiologia , Raiva/prevenção & controle , Raiva/veterinária , Vírus da Raiva/genética
17.
Microbiol Spectr ; 10(2): e0010322, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35384712

RESUMO

Rustrela virus (RusV; species Rubivirus strelense) is a recently discovered relative of rubella virus (RuV) that has been detected in cases of encephalitis in diverse mammals. Here, we diagnosed two additional cases of fatal RusV-associated meningoencephalitis in a South American coati (Nasua nasua) and a Eurasian or European otter (Lutra lutra) that were detected in a zoological garden with history of prior RusV infections. Both animals showed abnormal movement or unusual behavior and their brains tested positive for RusV using specific reverse transcription quantitative PCR (RT-qPCR) and RNA in situ hybridization. As previous sequencing of the RusV genome proved to be very challenging, we employed a sophisticated target-specific capture enrichment with specifically designed RNA baits to generate complete RusV genome sequences from both detected encephalitic animals and apparently healthy wild yellow-necked field mice (Apodemus flavicollis). Furthermore, the technique was used to revise three previously published RusV genomes from two encephalitic animals and a wild yellow-necked field mouse. When comparing the newly generated RusV sequences to the previously published RusV genomes, we identified a previously undetected stretch of 309 nucleotides predicted to represent the intergenic region and the sequence encoding the N terminus of the capsid protein. This indicated that the original RusV sequence was likely incomplete due to misassembly of the genome at a region with an exceptionally high G+C content of >80 mol%. The new sequence data indicate that RusV has an overall genome length of 9,631 nucleotides with the longest intergenic region (290 nucleotides) and capsid protein-encoding sequence (331 codons) within the genus Rubivirus. IMPORTANCE The detection of rustrela virus (RusV)-associated encephalitis in two carnivoran mammal species further extends the knowledge on susceptible species. Furthermore, we provide clinical and pathological data for the two new RusV cases, which were until now limited to the initial description of this fatal encephalitis. Using a sophisticated enrichment method prior to sequencing of the viral genome, we markedly improved the virus-to-background sequence ratio compared to that of standard procedures. Consequently, we were able to resolve and update the intergenic region and the coding region for the N terminus of the capsid protein of the initial RusV genome sequence. The updated putative capsid protein now resembles those of rubella and ruhugu virus in size and harbors a predicted RNA-binding domain that had not been identified in the initial RusV genome version. The newly determined complete RusV genomes strongly improve our knowledge of the genome structure of this novel rubivirus.


Assuntos
Capsídeo , Encefalite , Animais , Proteínas do Capsídeo/genética , DNA Intergênico , Encefalite/veterinária , Mamíferos , Camundongos , Nucleotídeos , RNA , Rubivirus
18.
Artigo em Alemão | MEDLINE | ID: mdl-35235983

RESUMO

In a fattening farm in southern Germany, paralysis of the hind limbs was observed in 2 age groups (50 kg as well as 60 kg) during a 4 week period. Despite a low morbidity of 3.3 % the majority of the affected animals needed to be euthanized in consequence to the progression of their hind limb paralysis. During pathomorphological examinations of 2 affected fattening pigs severe lymphohistiocytic meningoencephalomyelitis and vasculitis were detected. Immunhistochemistry revealed the presence of Porcine Teschovirus antigen in all parts of the central nervous system as well as in several cell types (neurons, glia cells, endothelial cells, mononuclear cells). Porcine Teschovirus was detected by PCR in spinal cord samples. The subsequently performed phylogenetic analysis PCR revealed a close relation (88 % full genome sequence) to porcine Teschovirus A11 strain "Dresden". Other swine relevant pathogens were excluded by PCR, bacteriologic examination and sequencing. Following a period of 4 weeks no additional cases of hind limb paralysis were observed in the fattening farm.


Assuntos
Infecções por Picornaviridae , Doenças dos Suínos , Teschovirus , Animais , Células Endoteliais , Paralisia/veterinária , Filogenia , Infecções por Picornaviridae/veterinária , Suínos , Teschovirus/genética
19.
Microorganisms ; 10(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35336101

RESUMO

Studies on tick-pathogen-host interactions are helping to identify candidates for vaccines against ticks and tick-borne diseases and to discover potent bioactive tick molecules. The tick midgut is the main tissue involved in blood feeding and, moreover, the first organ to have contact with pathogens ingested through the blood meal. As little is known about the molecular biology of feeding and tick defence mechanisms against microorganisms, but important for understanding vector-pathogen interactions, we explored the early transcriptional changes in the midgut of Ornithodoros moubata after feeding and in response to challenge with the relapsing-fever spirochete Borrelia duttonii using the Ion S5XL platform. Besides transcripts with metabolic function and immune-related transcripts we discovered numerous putative and uncharacterized protein sequences. Overall, our analyses support previous studies and provides a valuable reference database for further functional proteomic analysis of midgut proteins of O. moubata.

20.
Transbound Emerg Dis ; 69(2): 227-234, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34874614

RESUMO

An Austrian organic dairy sheep farm experienced cases of recumbency and sudden deaths in 3- to 4-week-old lambs. Two animals were subjected to thorough clinical and pathological investigations. Pathohistological analysis identified severe nonsuppurative myelitis and mild nonsuppurative encephalitis. A reverse-transcription quantitative PCR (RT-qPCR) assay for the recently discovered ovine picornavirus causing comparable lesions scored negative. By next-generation sequencing-based metagenomics, a nearly complete genome of a novel enterovirus could be detected and assembled. In situ hybridization using a specifically designed probe revealed robust signals in affected motoneurons of the spinal cord suggesting a causative role of the novel virus.


Assuntos
Encefalite , Infecções por Enterovirus , Enterovirus , Poliomielite , Animais , Tronco Encefálico , Encefalite/veterinária , Infecções por Enterovirus/veterinária , Poliomielite/veterinária , Ovinos , Carneiro Doméstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...